Riemann surfaces of class O_G, the Fenchel-Nielsen coordinates and holomorphic quadratic differentials

Teichmüller space: from low dimension to infinity and beyond
University of Montpellier, June 1-2, 2023

Dragomir Šarić
(joint with A. Basmajian and H. Hakobyan, and with M. Pandazis)

City University of New York
The Graduate Center and Queens College

dragomir.saric@qc.cuny.edu
A Riemann surface $X = \mathbb{H}/\Gamma$ is infinite if Γ is infinitely generated.

Γ is of the first kind if $\Lambda(\Gamma) = \partial_{\infty}\mathbb{H}$; otherwise Γ is of the second kind.

If Γ is of the second kind then $\partial_{\infty}\mathbb{H}/\Gamma$ contains a closed curve or an open arc.

Definition

The **geodesic flow** is a map $g : \mathbb{R} \times T^1X \to T^1X$ which moves $v \in T^1X$ by unit speed along a geodesic tangent to v.

- The **Liouville measure** L on the unit tangent bundle T^1X is locally the product of of the hyperbolic area and the angle measure.
- L is invariant under the geodesic flow.
- The geodesic flow on X is **ergodic** if for every invariant set $A \subset T^1X$ either $L_X(A) = 0$ or $L_X(A^c) = 0$.
Finite Riemann surfaces

If $\pi_1(S)$ is finitely generated then

the geodesic flow is ergodic $\iff \text{area}(S) < \infty$

All infinite Riemann surfaces have infinite area.
Characterizations of ergodicity of the geodesic flow

Theorem (Hopf-Tsuji-Sullivan, Astala-Zinsmeister-Bishop)

Let $X = \mathbb{H}/\Gamma$ be an infinite Riemann surface. The following are equivalent:

1. The geodesic flow on X is ergodic.
2. The Poincaré series diverges, i.e., $\sum_{\gamma \in \Gamma} e^{-d_{hyp}(z, \gamma(z))} = \infty$.
3. Brownian motion on X is recurrent.
4. X satisfies the Bowen property.

Theorem (Ahlfors-Sario, Poincaré)

The following are equivalent to the above:

1. X does not support a Green’s function, i.e. $X \in O_G$.
2. The harmonic measure of $\partial_\infty X$ is zero.
3. The extremal distance between a compact subsurface of X and $\partial_\infty X$ is infinite.
Classification Problem. Determine if an explicitly given Riemann surface \(X \in O_G \) (or geodesic flow of \(X \) is ergodic).

- (Ahlfors-Sario) \(X \) planar; \(X = \mathbb{C} \setminus E \in O_G \leftrightarrow \text{Cap}(E) = 0 \).
- (Tsuji, Laasonen) If \(X = \mathbb{D}/\Gamma \) and \(D \) is a Dirichlet fundamental polygon of \(\Gamma \), then
 \[
 \sigma(D \cap \mathbb{D}_r) \geq \frac{c}{1 - r} \quad \Rightarrow \quad X \notin O_g
 \]
 \[
 \sigma(D \cap \mathbb{D}_r) \leq c \log \frac{1}{1 - r} \quad \Rightarrow \quad X \in O_G,
 \]
 where \(\mathbb{D}_r = \{|z| < r\} \), \(\sigma(\cdot) \) - hyperbolic area in \(\mathbb{D} \).
- (Nicholls) There is no characterization of class \(O_G \) in terms of the growth rate of \(\sigma(D \cap \mathbb{D}_r) \).
- (Nicholls) \(\exists \Gamma_1, \Gamma_2 < PSL_2(\mathbb{R}) \) with a common fundamental infinite convex polygon \(P \) such that \(\mathbb{D}/\Gamma_1 \in O_G \), but \(\mathbb{D}/\Gamma_2 \notin O_G \).
- (Fernández-Rodrigues) \(\exists \) a Riemann surface \(X \) and \(\alpha_0, t_0 > 0 \) s.t. for all \(t > t_0 \)
 \[
 \sigma_X(B(p, t)) \geq e^{\alpha_0 t},
 \]
 but \(X \in O_G \). Here \(B(p, t) \) is the metric ball of radius \(t \), centered at \(p \in X \).
Examples of infinite Riemann surfaces

- A **topological end** of an infinite Riemann surface S is a “way of going to infinity” in S.

Example - Loch Ness monster: single topological end and infinite genus
Examples

Cantor Tree: (add countably many handles) Cantor set of ends

Infinite Flute Surface: space of ends is $\mathbb{N} \cup \infty$
A **pair of pants** is a topological space homeomorphic to the 2-sphere minus three topological disk.

A **geodesic pair of pants** is a pair of pants equipped with the hyperbolic metric such that its three boundary curves are geodesics.

Theorem (Alvarez-Rodriguez, Basmajian-Š.)

If Γ is of the first kind then any topological pants decomposition of $X = \mathbb{H}/\Gamma$ can be straightened to a geodesic pants decomposition.

If Γ is not of the first kind then X is not parabolic since X contains a geodesic half-plane.
Gluing two geodesic pairs of pants

- Two geodesic pairs of pants with two cuffs of equal length can be glued by an isometry; the choice of gluing is given by the relative twists: $-1/2 \leq t \leq 1/2$

![Diagram of two geodesic pairs of pants being glued](image)

- **Fenchel-Nielsen parameters** of X is the collection $\{(l_X(\alpha_n), t_X(\alpha_n))\}_n$.

- Conversely, given a topological pants decomposition of S and a collection $\{(l(\alpha_n), t(\alpha_n))\}$, there exists a hyperbolic surface X with these Fenchel-Nielsen parameters.

- However, the surface X obtained from $\{(l(\alpha_n), t(\alpha_n))\}$ might be incomplete—i.e., $\Lambda(\Gamma_X) \neq \partial_\infty \mathbb{H}$.
Theorem (Basmajian-Š.)

Let X be obtained from the Fenchel-Nielsen coordinates $\{(l(\alpha_n), t(\alpha_n))\}_n$. If X is incomplete, then we can change the twists $t(\alpha_n)$ and keep the original lengths such that the new hyperbolic surface is complete.
The class O_G from cuff lengths (Loch Ness Monster)

- If $X = \mathbb{H}/\Gamma \in O_G$ then G is of the first kind-i.e., it is union of geodesic pairs of pants.
- However, the first kind does not imply parabolicity.

Theorem (Basmajian, Hakobyan and Š.)

Let X be an infinite Loch Ness monster with cuffs of length $\{l_n\}_{n \in \mathbb{N}}$ accumulating to the topological end of X. Let $\{f_n\}_{n \in \mathbb{N}}$ be the lengths of geodesics that cut off the genus. If

$$f_n \leq M < \infty, \forall n \in \mathbb{N},$$

and

$$\sum_{n=1}^{\infty} e^{-\frac{l_n}{2}} = \infty.$$

then $X \in O_G$.

- In particular, if X is an infinite flute surface then $\sum_{n=1}^{\infty} e^{-\frac{l_n}{2}} = \infty$ implies that $X \in O_G$ (no matter what the twists are).
- $\ell_n = 2 \log n$ satisfies the above condition.
The class O_G from cuff lengths (Blooming Cantor Tree)

Cantor Tree: (add countably many handles) Cantor set of ends

Theorem (Basmajian, Hakobyan and Š.)

Let X be a Blooming Cantor Tree surface with a Cantor set of ends. If for every cuff α of generation n,

$$l_X(\alpha) \lesssim \frac{n}{2^n},$$

then $X \in O_G$.

- (McMullen) If $C \geq l_X(\alpha) \geq 1/C > 0$ then $X \notin O_G$ (yet it is complete).
- We obtain a general sufficient condition which works for a Riemann surface with arbitrary topology, and which implies all the results above.
- This general condition is formulated in terms of the moduli of certain annuli embedded in the surface.
Let Γ be a curve family of locally rectifiable curves on a Riemann surface X.

An allowable metric for Γ is a Borel measurable differential $\rho(z)|dz|$ on X s.t.

$$\int_{\gamma} \rho(z)|dz| \geq 1, \quad \forall \gamma \in \Gamma.$$

The modulus of Γ is defined by

$$\text{mod} \Gamma = \inf \int\int_{\Gamma} \rho(z)^2 \, dx \, dy,$$

where the infimum is over all Γ allowable differentials.

Let $D \subset X$ be open and $E_1, E_2 \subset \overline{D}$ two closed subsets. Extremal distance between E_1 and E_2 in \overline{D} is

$$\lambda_D(E_1, E_2) = \frac{1}{\text{mod} \Gamma}$$

where Γ is the family of curves in D connecting E_1 and E_2.
The extremal distance condition for $X \in O_G$

- Let $\{K_n\}_{n=1}^{\infty}$ be a compact exhaustion of a Riemann surface X by regular subsurfaces whose boundary components are not null homotopic.

- (Ahlfors-Sario) X is parabolic $\iff \lambda_{K_n \setminus K_1}(\partial K_1, \partial K_n) \xrightarrow{n \to \infty} \infty$.

- Suppose $\partial K_n \subset U_n \subset K_{n+1} \setminus K_{n-1}$ with $\partial U_n = a_n \cup b_n$, $a_n \subset K_1^\circ$ and $b_n \subset (K_{n+1} \setminus K_n)^\circ$. Let λ_n be the extremal distance between a_n and b_n in U_n.

- By the serial rule for extremal distance: If $\sum_{n=1}^{\infty} \lambda_n = \infty$ then $X \in O_G$.

Figure: The serial rule
The standard one-sided collar of a simple closed geodesic α is the set of all points on one side of α which are at most $r(\ell/2) := \sinh^{-1} \frac{1}{\sinh(\ell/2)}$ away from α.

(Maskit) Let $R_{st}(\alpha)$ be a one-sided standard collar of α. The extremal distance $\lambda_{R_{st}(\alpha)}$ between boundary curves of R satisfies

$$\lambda_{R_{st}(\alpha)} = \frac{e^{-\frac{\ell}{2}}}{\ell}.$$
The non-standard collar $R_{ns}(\alpha)$ around geodesic α of length ℓ.

Let γ be the orthogeodesic between α and β, let $\lambda_{R_{ns}(\alpha)}$ be the extremal distance between the boundary curves of $R_{ns}(\alpha)$

(Basmajian, Hakobyan and Š.) When $\ell \to \infty$, we have

$$\lambda_{R_{ns}(\alpha)} \preceq \gamma e^{-\ell/2}$$

for all $0 < \gamma < \gamma_0$ (or equivalently β large) and

$$\lambda_{R_{ns}(\alpha)} \preceq e^{-\ell/2}$$

for all $\gamma \geq \gamma_0$ (or β bounded from above).
Comparing the non-standard and standard collars

In general, the non-standard and standard collars do not contain each other.

When one cuffs is a puncture—i.e., $\ell(\beta) = 0$ then

Note that $\frac{\lambda_{Rns}(\alpha)}{\lambda_{Rst}(\alpha)} \asymp \ell$.
The distance d_n between ℓ_n and ℓ_{n+1} is approximately $e^{-\ell_n/2} + e^{-\ell_{n+1}/2}$

$X = \{(\ell_n, 0)\}$ is incomplete iff $\sum_{n=1}^{\infty} d_n < \infty$

For zero twist flute surface $X(\ell_n, 0)$ we have a complete understanding.

Proposition. (Basmajian-Hakobyan-Š.)

Let $X(\ell_n, 0)$ be a flute surface with zero twists. Then the following are equivalent

- $X(\ell_n, 0) \in O_G$,
- $\sum_n e^{-\ell_n/2} = \infty$,
- $X(\ell_n, 0)$ is complete, i.e. Γ is of the first kind.
When we glue two one-sided non-standard collars along a common geodesic we obtain an annulus with two elongated pieces corresponding to (half of) neighborhood of punctures whose relative positions depend on the twist.
Twist effects: flute surfaces

- When gluing two standard one-sided collars the twist has no effect on the shape of the obtained annulus and the extremal distance does not change with the twist.
- When gluing two non-standard collars the shape depends on the twist and the extremal distance increases with the absolute value of the twist.

Theorem (Basmajian, Hakobyan and Š.)

Let X be an infinite flute with the Fenchel-Nielsen coordinates $\{(\ell_n, t_n)\}_n$. If

$$\sum_{n=1}^{\infty} e^{-\left(\frac{1}{2} - \frac{|t_n|}{2}\right)\ell_n} = \infty$$

then X is parabolic.

- If $\sum_{n=1}^{\infty} e^{-\frac{1}{2}\ell_n} = \infty$ then $X \in O_G$ for all choices of twists t_n.
- It is possible that $\sum_{n=1}^{\infty} e^{-\frac{1}{2}\ell_n} < \infty$ and yet $X \in O_G$.
Twist effects: flute surfaces with half-twists

- Let $\ell_n = 4 \log n$ and $t_n \equiv 1/2$
- $\sum_n e^{-\ell_n/2} \leq \sum_n n^{-2} < \infty$
- $\sum_n e^{-(1/2 - |t_n|/2)\ell_n} = \sum_n e^{-\ell_n/4} = \sum_n 1/n = \infty$ then $X(4 \log n, 1/2) \in O_G$

When $t_n \equiv 1/2$, to which extent $\sum_{n=1}^{\infty} e^{-\ell_n/4} = \infty$ characterize the class O_g?
The non-complete half-twist surfaces

Theorem (Basmajian, Hakobyan and Š.)

Let $X(\ell_n, 1/2)$ be a half-twist flute surface with concave and increasing lengths ℓ_n. TFAE:

- $X(\ell_n, 1/2) \in O_G$,
- $\sum_{n=1}^{\infty} e^{-\ell_n/4} = \infty$,
- $X(\ell_n, 1/2)$ is complete.

Hakobyan slice: $\ell_{2n} = a \log(n + 1) + b \log n$, $\ell_{2n+1} = (a + b) \log(n + 1)$, $t_n \equiv \frac{1}{2}$ for $a > 0$ and $b > 0$; ℓ_n increasing but not concave.
A Riemann surface X is **symmetric** if there is an orientation reversing isometry which interchanges front to back decomposition of pairs of pants into hexagons.

Theorem (M. Pandazis and Š.)

Let $X_f = \mathbb{H}/\Gamma$ be a flute surface with $t_n \in \{0, \frac{1}{2}\}$ for all n. Then $X_f \in O_g$ if and only if Γ is of the first kind (i.e. X_f complete-no funnels or half-planes).
Symmetric surfaces

More generally, a surface is end symmetric if each component of the complement of a compact geodesic subsurface has an orientation reversing isometry whose set of fixed points divides the end into front and back.

Theorem (M. Pandazis and Š.)

Let $X = \mathbb{H}/\Gamma$ be an end symmetric Riemann surface with finitely many ends. Then $X \in \mathcal{O}_G$ iff Γ is of the first kind.
We need to find a condition on the lengths such that the half-twist flute surface X_f is complete.

for $\sigma_n = \ell_n - \ell_{n-1} + \cdots + (-1)^{n-1}\ell_1$, the expression $e^{-\sigma_n/2}$ is the length of the summit of a Sacherri quadrilateral between ℓ_n and ℓ_{n+1} obtained by concatenations.

Proposition. (Basmajian-Hakobyan-Š.)

Let $X = \mathbb{H}/\Gamma$ be a half-flute with cuff lengths $\{\ell_n\}$. If $\sum_{n=1}^{\infty} e^{-\sigma_n/2} < \infty$ then Γ is of the second kind (i.e. X incomplete).
In the Ω-regions of Hakobyan slice, we have $\sum_{n=1}^{\infty} e^{-\sigma n/2} = \infty$.

Theorem (Pandazis-Š.)

Let X be a half-twist flute surface in the Hakobyan slice. Then $\sum_{n=1}^{\infty} e^{-\sigma n/2} = \infty$ implies $X \in O_G$.

Dragomir Šarić (joint with A. Basmajian and H. Hakobyan, and with M. Pandazis) (CUNY)
We compare $\sum_{n=1}^{\infty} e^{-\sigma n/2} = \infty$ to the length of a piecewise horocyclic path that follows a zig-zag of geodesics obtained by adding a geodesic asymptotic to ℓ_n and ℓ_{n+1} at its ends.
Integrable quadratic differentials

Analogue of Hubbard-Masur theorem for compact surfaces.

Theorem (Š.)

Let \(X = \mathbb{H}/\Gamma \) be an infinite Riemann surface with \(\Gamma \) of the first kind. Then the space of integrable holomorphic quadratic differentials \(A(X) \) on \(X \) is homeomorphic to a subset \(ML_f(X) \) of the space of all measured laminations on \(X \), where \(ML_f(X) \) can be realized by partial foliations on \(X \) with finite Dirichlet energy.

Theorem (Š.)

\(X \notin O_G \) iff there exists \(\varphi \in A(X) \) whose horizontal trajectories are escaping to \(\partial_{\infty}X \).

Brownian motion on \(X \) is recurrent iff a.e. leaf of every finite-area holomorphic quadratic differential is recurrent.

Theorem (Š.)

Assume \(X \in O_G \). The Teichmüller distance is given by Kerkchoff’s formula, i.e.

\[
d_T(Y, Z) = \frac{1}{2} \log \sup_{\gamma \in S} \frac{\text{ext}_Z(\gamma)}{\text{ext}_Y(\gamma)}
\]

where \(\text{ext}_Y(\cdot) \) and \(\text{ext}_Z(\cdot) \) are extremal lengths on surfaces \(Y \) and \(Z \) of the corresponding simple closed curves.
Applications to the classification of Riemann surfaces

Theorem (Š.)

Let X_C be the Cantor tree surface with geodesic pants decomposition such that the lengths of the boundary geodesics at the level n are equal to some ℓ_n for each n. If there exists $r > 2$ such that

$$\ell_n = \frac{n^r}{2^n}$$

then $X \notin O_G$.

Bridges the gap between Basmajian-Hakobyan-Š. ($\ell_n \leq n/2^n$ implies $X \in O_G$) and McMullen ($\ell_n \geq c_0 > 0$ implies $X \notin O_G$).
The proof is by constructing a finite-area holomorphic quadratic differential on X whose horizontal trajectories are escaping outside $\partial_\infty X$.

Theorem (Pandazis)

Let X_C be the (blooming) Cantor tree surface with geodesic pants decomposition such that there exists $r > 1$ with

$$\frac{1}{n^2} \lesssim \ell_n^j \lesssim \frac{n^r}{2^n},$$

for all $1 \leq j \leq 2^{n+1}$ then $X \notin O_G$.

The idea is to construct a partial foliation of X_C using the pants decomposition and breaking each pair of pants into hexagons.
Open problems:

Problem 1. (Sullivan) A flute surface is conformal to either a complex plane minus a discrete set of points ($\in O_G$) or a disk minus a discrete set of points ($\notin O_G$). If the points accumulate to the whole S^1 then the surface has covering group of the first kind but it is not in O_G. Find the Fenchel-Nielsen coordinates of such flute surfaces.

Problem 2. (Kahn, Markovic) Given any sequence $\{a_n\}_n$ of positive numbers, is there a flute surface X with cuff lengths $\ell_n = a_n$ and a choice of twists $\{t_n\}_n$ such that $X \in O_G$? Basmajian-Š. proved that there is always a choice of twists $\{t_n\}$ such that the covering group of X is of the first kind, i.e. X is complete.
References:

- Šarić, Dragomir; *Quadratic differentials and foliations on infinite Riemann surfaces*, preprint, arXiv:2207.08626

- Pandazis, Michael; *Non-parabolicity of blooming Cantor tree using horizontal foliations*, in preparation.

Thank you!