Riemann surfaces of class O_{G}, the Fenchel-Nielsen coordinates and holomorphic quadratic differentials

Teichmüller space: from low dimension to infinity and beyond University of Montpellier, June 1-2, 2023

Dragomir Šarić
(joint with A. Basmajian and H. Hakobyan, and with M. Pandazis)
City University of New York
The Graduate Center and Queens College
dragomir.saric@qc.cuny.edu

Infinite Riemann surfaces

- A Riemann surface $X=\mathbb{H} / \Gamma$ is infinite if Γ is infinitely generated.
- Γ is of the first kind if $\Lambda(\Gamma)=\partial_{\infty} \mathbb{H}$; otherwise Γ is of the second kind
- If Γ is of the second kind then $\partial_{\infty} \mathbb{H} / \Gamma$ contains a closed curve or an open arc.

Definition

The geodesic flow is a map $g: \mathbb{R} \times T^{1} X \rightarrow T^{1} X$ which moves $\mathbf{v} \in T^{1} X$ by unit speed along a geodesic tangent to \mathbf{v}.

- The Liouville measure L on the unit tangent bundle $T^{1} X$ is locally the product of of the hyperbolic area and the angle measure
- L is invariant under the geodesic flow
- The geodesic flow on X is ergodic if for every invariant set $A \subset T^{1} X$ either $L_{X}(A)=0$ or $L_{X}\left(A^{c}\right)=0$.

Finite Riemann surfaces

If $\pi_{1}(S)$ is finitely generated then
the geodesic flow is ergodic $\Leftrightarrow \operatorname{area}(S)<\infty$

All infinite Riemann surfaces have infinite area.

Characterizations of ergodicity of the geodesic flow

Theorem (Hopf-Tsuji-Sullivan, Astala-Zinsmeister-Bishop)

Let $X=\mathbb{H} / \Gamma$ be an infinite Riemann surface. The following are equivalent:
(1) The geodesic flow on X is ergodic.
(2) The Poincaré series diverges, i.e., $\sum_{\gamma \in \Gamma} e^{-d_{\text {hyp }}(z, \gamma(z))}=\infty$.
(3) Brownian motion on X is recurrent.
(4) X satisfies the Bowen property

Theorem (Ahlfors-Sario, Poincaré)

The following are equivalent to the above:
(1) X does not support a Green's function, i.e. $X \in O_{G}$.
(2) The harmonic measure of $\partial_{\infty} X$ is zero.
(3) The extremal distance between a compact subsurface of X and $\partial_{\infty} X$ is infinite.

Riemann surfaces of class O_{G}

Classification Problem. Determine if an explicitly given Riemann surface $X \in O_{G}$ (or geodesic flow of X is ergodic).

- (Ahlfors-Sario) X planar; $X=\mathbb{C} \backslash E \in O_{G} \Leftrightarrow \operatorname{Cap}(E)=0$.
- (Tsuji, Laasonen) If $X=\mathbb{D} / \Gamma$ and D is a Dirichlet fundamental polygon of Γ, then

$$
\begin{aligned}
& \sigma\left(D \cap \mathbb{D}_{r}\right) \geq \frac{c}{1-r} \quad \Rightarrow \quad X \notin O_{g} \\
& \sigma\left(D \cap \mathbb{D}_{r}\right) \leq c \log \frac{1}{1-r} \Rightarrow X \in O_{G}
\end{aligned}
$$

where $\mathbb{D}_{r}=\{|z|<r\}, \sigma(\cdot)$ - hyperbolic area in \mathbb{D}.

- (Nicholls) There is no characterization of class O_{G} in terms of the growth rate of $\sigma\left(D \cap \mathbb{D}_{r}\right)$.
- (Nicholls) $\exists \Gamma_{1}, \Gamma_{2}<P S L_{2}(\mathbb{R})$ with a common fundamental infinite convex polygon P such that $\mathbb{D} / \Gamma_{1} \in O_{G}$, but $\mathbb{D} / \Gamma_{2} \notin O_{G}$.
- (Fernández-Rodrigues) \exists a Riemann surface X and $\alpha_{0}, t_{0}>0$ s.t. for all $t>t_{0}$

$$
\sigma_{X}(B(p, t)) \geq e^{\alpha_{0} t}
$$

but $X \in O_{G}$. Here $B(p, t)$ is the metric ball of radius t, centered at $p \in X$.

Examples of infinite Riemann surfaces

- A topological end of an infinite Riemann surface S is a "way of going to infinity" in S. Example - Loch Ness monster: single topological end and infinite genus

Examples

Cantor Tree: (add countably many handles) Cantor set of ends

Infinite Flute Surface: space of ends is $\mathbb{N} \cup \infty$

Pairs of pants decomposition

- A pair of pants is a topological space homeomorphic to the 2-sphere minus three topological disk.
- A geodesic pair of pants is a pair of pants equipped with the hyperbolic metric such that its three boundary curves are geodesics.

Theorem (Alvarez-Rodriguez, Basmajian-Š.)

If Γ is of the first kind then any topological pants decomposition of $X=\mathbb{H} / \Gamma$ can be straightened to a geodesic pants decomposition.

- If Γ is not of the first kind then X is not parabolic since X contains a geodesic half-plane.

Gluing two geodesic pairs of pants

- Two geodesic pairs of pants with two cuffs of equal length can be glued by an isometry; the choice of gluing is given by the relative twists: $-1 / 2 \leq t \leq 1 / 2$

- Fenchel-Nielsen parameters of X is the collection $\left\{\left(I_{X}\left(\alpha_{n}\right), t_{X}\left(\alpha_{n}\right)\right)\right\}_{n}$.
- Conversely, given a topological pants decomposition of S and a collection $\left\{\left(/\left(\alpha_{n}\right), t\left(\alpha_{n}\right)\right)\right\}$, there exists a hyperbolic surface X with these Fenchel-Nielsen parameters.
- However, the surface X obtained from $\left\{\left(I\left(\alpha_{n}\right), t\left(\alpha_{n}\right)\right)\right\}$ might be incomplete-i.e., $\Lambda\left(\Gamma_{X}\right) \neq \partial_{\infty} \mathbb{H}$.

The Fenchel-Nielsen coordinates and groups of the first kind

Figure: An incomplete surface

Theorem (Basmajian-Š.)

Let X be obtained from the Fenchel-Nielsen coordinates $\left\{\left(I\left(\alpha_{n}\right), t\left(\alpha_{n}\right)\right)\right\}_{n}$. If X is incomplete, then we can change the twists $t\left(\alpha_{n}\right)$ and keep the original lengths such that the new hyperbolic surface is complete.

The class O_{G} from cuff lengths (Loch Ness Monster)

- If $X=\mathbb{H} / \Gamma \in O_{G}$ then G is of the first kind-i.e., it is union of geodesic pairs of pants.
- However, the first kind does not imply parabolicity.

Theorem (Basmajian, Hakobyan and Š.)

Let X be an infinite Loch Ness monster with cuffs of length $\left\{I_{n}\right\}_{n \in \mathbb{N}}$ accumulating to the topological end of X. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ be the lengths of geodesics that cut off the genus. If

$$
f_{n} \leq M<\infty, \forall n \in \mathbb{N},
$$

and

$$
\sum_{n=1}^{\infty} e^{-\frac{l_{n}}{2}}=\infty
$$

then $X \in O_{G}$.

- In particular, if X is an infinite flute surface then $\sum_{n=1}^{\infty} e^{-\frac{l_{n}}{2}}=\infty$ implies that $X \in O_{G}$ (no matter what the twists are).
- $\ell_{n}=2 \log n$ satisfies the above condition.

The class O_{G} from cuff lengths (Blooming Cantor Tree)

Cantor Tree: (add countably many handles) Cantor set of ends

Theorem (Basmajian, Hakobyan and Š.)

Let X be a Blooming Cantor Tree surface with a Cantor set of ends. If for every cuff α of generation n,

$$
I_{X}(\alpha) \lesssim \frac{n}{2^{n}},
$$

then $X \in O_{G}$.

- (McMullen) If $C \geq I_{X}(\alpha) \geq 1 / C>0$ then $X \notin O_{G}$ (yet it is complete).
- We obtain a general sufficient condition which works for a Riemann surface with arbitrary topology, and which implies all the results above.
- This general condition is formulated in terms of the moduli of certain annuli embedded in the surface.

The modulus of curve family

- Let Γ be a curve family of locally rectifiable curves on a Riemann surface X
- An allowable metric for Γ is a Borel measurable differential $\rho(z)|d z|$ on X s.t.

$$
\int_{\gamma} \rho(z)|d z| \geq 1, \quad \forall \gamma \in \Gamma
$$

- The modulus of Γ is defined by

$$
\bmod \Gamma=\inf \iint_{X} \rho(z)^{2} d x d y
$$

where the infimum is over all Γ allowable differentials.

- Let $D \subset X$ be open and $E_{1}, E_{2} \subset \bar{D}$ two closed subsets. Extremal distance between E_{1} and E_{2} in \bar{D} is

$$
\lambda_{D}\left(E_{1}, E_{2}\right)=\frac{1}{\bmod \Gamma}
$$

where Γ is the family of curves in D connecting E_{1} and E_{2}.

The extremal distance condition for $X \in O_{G}$

- Let $\left\{K_{n}\right\}_{n=1}^{\infty}$ be a compact exhaustion of a Riemann surface X by regular subsurfaces whose boundary components are not null homotopic.
- (Ahlfors-Sario) X is parabolic $\Longleftrightarrow \lambda_{K_{n} \backslash K_{1}}\left(\partial K_{1}, \partial K_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} \infty$.
- Suppose $\partial K_{n} \subset U_{n} \subset K_{n+1} \backslash K_{n-1}$ with $\partial U_{n}=a_{n} \cup b_{n}, a_{n} \subset K_{n}^{\circ}$ and $b_{n} \subset\left(K_{n+1} \backslash K_{n}\right)^{\circ}$. Let λ_{n} is the extremal distance between a_{n} and b_{n} in U_{n}.
- By the serial rule for extremal distance: If $\sum_{n=1}^{\infty} \lambda_{n}=\infty$ then $X \in O_{G}$.

Figure: The serial rule

Collars on hyperbolic surfaces

- The standard one-sided collar of a simple closed geodesic α is the set of all points on one side of α which are at most $r(\ell / 2):=\sinh ^{-1} \frac{1}{\sinh (\ell / 2)}$ away from α.
- (Maskit) Let $R_{s t}(\alpha)$ be a one-sided standard collar of α. The extremal distance $\lambda_{R_{s t}(\alpha)}$ between boundary curves of R satisfies

$$
\lambda_{R_{s t}(\alpha)}=\frac{e^{-\frac{\ell}{2}}}{\ell}
$$

The non-standard one-sided collars

- The non-standard collar $R_{n s}(\alpha)$ around geodesic α of length ℓ.
- Let γ be the orthogeodesic between α and β, let $\lambda_{R_{\text {ns }}(\alpha)}$ be the extremal distance between the boundary curves of $R_{n s}(\alpha)$
- (Basmajian, Hakobyan and Š.) When $\ell \rightarrow \infty$, we have

$$
\lambda_{R_{n s}(\alpha)} \asymp \gamma e^{-\ell / 2}
$$

for all $0<\gamma<\gamma_{0}$ (or equivalently β large) and

$$
\lambda_{R_{\text {ns }}(\alpha)} \asymp e^{-\ell / 2}
$$

for all $\gamma \geq \gamma_{0}$ (or β bounded from above).

Comparing the non-standard and standard collars

In general, the non-standard and standard collars do not contain each other.

When one cuffs is a puncture-i.e., $\ell(\beta)=0$ then

Note that $\frac{\lambda_{R_{\text {ns }}}(\alpha)}{\lambda_{R_{s t}(\alpha)}} \asymp \ell$.

The zero twist flute surfaces

- The distance d_{n} between ℓ_{n} and ℓ_{n+1} is approximately $e^{-\ell_{n} / 2}+e^{-\ell_{n+1} / 2}$
- $X=\left\{\left(\ell_{n}, 0\right)\right\}$ is incomplete iff $\sum_{n=1}^{\infty} d_{n}<\infty$
- For zero twist flute surface $X\left(\ell_{n}, 0\right)$ we have a complete understanding.

Proposition. (Basmajian-Hakobyan-Š.)

Let $X\left(\ell_{n}, 0\right)$ be a flute surface with zero twists. Then the following are equivalent

- $X\left(\ell_{n}, 0\right) \in O_{G}$,
- $\sum_{n} e^{-\ell_{n} / 2}=\infty$,
- $X\left(\ell_{n}, 0\right)$ is complete, i.e. Γ is of the first kind.

Gluing non-standard collars

When we glue two one-sided non-standard collars along a common geodesic we obtain an annulus with two elongated pieces corresponding to (half of) neighborhood of punctures whose relative positions depend on the twist

Twist effects: flute surfaces

- When gluing two standard one-sided collars the twist has no effect on the shape of the obtained annulus and the extremal distance does not change with the twist.
- When gluing two non-standard collars the shape depends on the twist and the extremal distance increases with the absolute value of the twist.

Theorem (Basmajian, Hakobyan and Š.)

Let X be an infinite flute with the Fenchel-Nielsen coordinates $\left\{\left(\ell_{n}, t_{n}\right)\right\}_{n}$. If

$$
\sum_{n=1}^{\infty} e^{-\left(\frac{1}{2}-\frac{\left|t_{n}\right|}{2}\right) \ell_{n}}=\infty
$$

then X is parabolic.

- If $\sum_{n=1}^{\infty} e^{-\frac{1}{2} \ell_{n}}=\infty$ then $X \in O_{G}$ for all choices of twists t_{n}.
- It is possible that $\sum_{n=1}^{\infty} e^{-\frac{1}{2} \ell_{n}}<\infty$ and yet $X \in O_{G}$.

Twist effects: flute surfaces with half-twists

- let $\ell_{n}=4 \log n$ and $t_{n} \equiv 1 / 2$
- $\sum_{n} e^{-\ell_{n} / 2} \leq \sum_{n} n^{-2}<\infty$
- $\sum_{n} e^{-\left(\frac{1}{2}-\frac{\left|t_{n}\right|}{2}\right) \ell_{n}}=\sum_{n} e^{-\frac{\ell_{n}}{4}}=\sum_{n} 1 / n=\infty$ then $X(4 \log n, 1 / 2) \in O_{G}$

When $t_{n} \equiv 1 / 2$, to which extent $\sum_{n=1}^{\infty} e^{-\ell_{n} / 4}=\infty$ characterize the class O_{g} ?

The non-complete half-twist surfaces

Theorem (Basmajian, Hakobyan and Š.)

Let $X\left(\ell_{n}, 1 / 2\right)$ be a half-twist flute surface with concave and increasing lengths ℓ_{n}. TFAE:

- $X\left(\ell_{n}, 1 / 2\right) \in O_{G}$,
- $\sum_{n=1}^{\infty} e^{-\ell_{n} / 4}=\infty$,
- $X\left(\ell_{n}, 1 / 2\right)$ is complete.

Hakobyan slice: $\ell_{2 n}=a \log (n+1)+b \log n, \quad \ell_{2 n+1}=(a+b) \log (n+1), \quad t_{n} \equiv 1 / 2$ for $a>0$ and $b>0 ; \ell_{n}$ increasing but not concave

Symmetric surfaces

A Riemann surface X is symmetric if there is an orientation reversing isometry which interchanges front to back decomposition of pairs of pants into hexagons.

Theorem (M. Pandazis and Š.)

Let $X_{f}=\mathbb{H} / \Gamma$ be a flute surface with $t_{n} \in\left\{0, \frac{1}{2}\right\}$ for all n. Then $X_{f} \in O_{g}$ if and only if Γ is of the first kind (i.e. X_{f} complete-no funnels or half-planes).

Symmetric surfaces

More generally, a surface is end symmetric if each component of the complement of a compact geodesic subsurface has an orientation reversing isometry whose set of fixed points divides the end into front and back.

Theorem (M. Pandazis and Š.)

Let $X=\mathbb{H} / \Gamma$ be an end symmetric Riemann surface with finitely many ends. Then $X \in O_{G}$ iff Γ is of the first kind.

Hakobyan slice

We need to find a condition on the lengths such that the half-twist flute surface X_{f} is complete. for $\sigma_{n}=\ell_{n}-\ell_{n-1}+\cdots+(-1)^{n-1} \ell_{1}$, the expression $e^{-\sigma_{n} / 2}$ is the length of the summit of a Sacherri quadrilateral between ℓ_{n} and ℓ_{n+1} obtained by concatenations

Proposition. (Basmajian-Hakobyan-Š.)

Let $X=\mathbb{H} / \Gamma$ be a half-flute with cuff lengths $\left\{\ell_{n}\right\}$. If $\sum_{n=1}^{\infty} e^{-\sigma_{n} / 2}<\infty$ then Γ is of the second kind (i.e. X incomplete).

Hakobyan slice

In the ?-regions of Hakobyan slice, we have $\sum_{n=1}^{\infty} e^{-\sigma_{n} / 2}=\infty$.

Theorem (Pandazis-Š.)

Let X be a half-twist flute surface in the Hakobyan slice. Then $\sum_{n=1}^{\infty} e^{-\sigma_{n} / 2}=\infty$ implies $X \in O_{G}$.

Hakobyan slice

We compare $\sum_{n=1}^{\infty} e^{-\sigma_{n} / 2}=\infty$ to the length of a piecewise horocyclic path that follows a zig-zag of geodesics obtained by adding a geodesic asymptotic to ℓ_{n} and ℓ_{n+1} at its ends.

Integrable quadratic differentials

Analogue of Hubbard-Masur theorem for compact surfaces.

Theorem (Š.)

Let $X=\mathbb{H} / \Gamma$ be an infinite Riemann surface with Γ of the first kind. Then the space of integrable holomorphic quadratic differentials $A(X)$ on X is homeomorphic to a subset $M L_{f}(X)$ of the space of all measured laminations on X, where $M L_{f}(X)$ can be realized by partial foliations on X with finite Dirichlet energy.

Theorem (Š.)

$X \notin O_{G}$ iff there exists $\varphi \in A(X)$ whose horizontal trajectories are escaping to $\partial_{\infty} X$.
Brownian motion on X is recurrent iff a.e. leaf of every finite-area holomorphic quadratic differential is recurrent.

Theorem (Š.)

Assume $X \in O_{G}$. The Teichmüller distance is given by Kerkchoff's formula, i.e.

$$
d_{T}(Y, Z)=\frac{1}{2} \log \sup _{\gamma \in S} \frac{\operatorname{ext}_{Z}(\gamma)}{\operatorname{ext}(\gamma)}
$$

where $\operatorname{ext}_{Y}(\cdot)$ and $\operatorname{ext}_{Z}(\cdot)$ are extremal lengths on surfaces Y and Z of the corresponding simple closed curves.

Applications to the classification of Riemann surfaces

Theorem (Š.)

Let X_{C} be the Cantor tree surface with geodesic pants decomposition such that the lengths of the boundary geodesics at the level n are equal to some ℓ_{n} for each n. If there exists $r>2$ such that

$$
\ell_{n}=\frac{n^{r}}{2^{n}}
$$

then $X \notin O_{G}$.
Bridges the gap between Basmajian-Hakobyan-Š. ($\ell_{n} \leq n / 2^{n}$ implies $X \in O_{G}$) and McMullen ($\ell_{n} \geq c_{0}>0$ implies $X \notin O_{G}$).

Cantor tree surfaces

The proof is by constructing a finite-area holomorphic quadratic differential on X whose horizontal trajectories are escaping ot $\partial_{\infty} X$.

Theorem (Pandazis)

Let X_{C} be the (blooming) Cantor tree surface with geodesic pants decomposition such that there exists $r>1$ with

$$
\frac{1}{n^{2}} \lesssim \ell_{n}^{j} \lesssim \frac{n^{r}}{2^{n}}
$$

for all $1 \leq j \leq 2^{n+1}$ then $X \notin O_{G}$.
The idea is to construct a partial foliation of X_{C} using the pants decomposition and breaking each pair of pants into hexagons.

Open problems:

Problem 1. (Sullivan) A flute surface is conformal to either a complex plane minus a discrete set of points $\left(\in O_{G}\right)$ or a disk minus a discrete set of points $\left(\notin O_{G}\right)$. If the points accumulate to the whole S^{1} then the surface has covering group of the first kind but it is not in O_{G}. Find the Fenchel-Nielsen coordinates of such flute surfaces.

Problem 2. (Kahn, Markovic) Given any sequence $\left\{a_{n}\right\}_{n}$ of positive numbers, is there a flute surface X with cuff lengths $\ell_{n}=a_{n}$ and a choice of twists $\left\{t_{n}\right\}_{n}$ such that $X \in O_{G}$? Basmajian-Š. proved that there is always a choice of twists $\left\{t_{n}\right\}$ such that the covering group of X is of the first kind, i.e. X is complete.

References:

- Basmajian, Ara; Hakobyan, Hrant; Šarić, Dragomir; The type problem for Riemann surfaces via Fenchel-Nielsen parameters. Proc. Lond. Math. Soc. (3) 125 (2022), no. 3, 568-625.
- Pandazis, Michael; Šarić, Dragomir; Ergodicity of the geodesic flow on symmetric surfaces, to appear Trans. Amer. Math. Soc., arXiv:2211.16541.
- Šarić, Dragomir; Quadratic differentials and foliations on infinite Riemann surfaces, preprint, arXiv:2207.08626
- Pandazis, Michael; Non-parabolicity of blooming Cantor tree using horizontal foliations, in preparation.

Thank you!

